|
Translated by G. Mure.
84 pages - You are on Page 39
When we are to prove a conclusion, we must take a primary essential predicate-suppose it C-of the subject B, and then suppose A similarly predicable of C. If we proceed in this manner, no proposition or attribute which falls beyond A is admitted in the proof: the interval is constantly condensed until subject and predicate become indivisible, i.e. one. We have our unit when the premiss becomes immediate, since the immediate premiss alone is a single premiss in the unqualified sense of 'single'. And as in other spheres the basic element is simple but not identical in all-in a system of weight it is the mina, in music the quarter-tone, and so on--so in syllogism the unit is an immediate premiss, and in the knowledge that demonstration gives it is an intuition. In syllogisms, then, which prove the inherence of an attribute, nothing falls outside the major term. In the case of negative syllogisms on the other hand, (1) in the first figure nothing falls outside the major term whose inherence is in question; e.g. to prove through a middle C that A does not inhere in B the premisses required are, all B is C, no C is A. Then if it has to be proved that no C is A, a middle must be found between and C; and this procedure will never vary.
(2) If we have to show that E is not D by means of the premisses, all D is C; no E, or not all E, is C; then the middle will never fall beyond E, and E is the subject of which D is to be denied in the conclusion.
(3) In the third figure the middle will never fall beyond the limits of the subject and the attribute denied of it.
Aristotle Complete Works
Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://www.ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/posterior-analytics.asp?pg=39