Reference address : https://www.ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/posterior-analytics.asp?pg=38

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
ARISTOTLE HOME PAGE  /  ARISTOTLE WORKS  /  SEARCH ARISTOTLE WORKS  

Aristotle POSTERIOR ANALYTICS Complete

Translated by G. Mure.

Aristotle Bilingual Anthology  Studies  Aristotle in Print

ELPENOR EDITIONS IN PRINT

The Original Greek New Testament
84 pages - You are on Page 38

Part 23

It is an evident corollary of these conclusions that if the same attribute A inheres in two terms C and D predicable either not at all, or not of all instances, of one another, it does not always belong to them in virtue of a common middle term. Isosceles and scalene possess the attribute of having their angles equal to two right angles in virtue of a common middle; for they possess it in so far as they are both a certain kind of figure, and not in so far as they differ from one another. But this is not always the case: for, were it so, if we take B as the common middle in virtue of which A inheres in C and D, clearly B would inhere in C and D through a second common middle, and this in turn would inhere in C and D through a third, so that between two terms an infinity of intermediates would fall-an impossibility. Thus it need not always be in virtue of a common middle term that a single attribute inheres in several subjects, since there must be immediate intervals. Yet if the attribute to be proved common to two subjects is to be one of their essential attributes, the middle terms involved must be within one subject genus and be derived from the same group of immediate premisses; for we have seen that processes of proof cannot pass from one genus to another.

It is also clear that when A inheres in B, this can be demonstrated if there is a middle term. Further, the 'elements' of such a conclusion are the premisses containing the middle in question, and they are identical in number with the middle terms, seeing that the immediate propositions-or at least such immediate propositions as are universal-are the 'elements'. If, on the other hand, there is no middle term, demonstration ceases to be possible: we are on the way to the basic truths. Similarly if A does not inhere in B, this can be demonstrated if there is a middle term or a term prior to B in which A does not inhere: otherwise there is no demonstration and a basic truth is reached. There are, moreover, as many 'elements' of the demonstrated conclusion as there are middle terms, since it is propositions containing these middle terms that are the basic premisses on which the demonstration rests; and as there are some indemonstrable basic truths asserting that 'this is that' or that 'this inheres in that', so there are others denying that 'this is that' or that 'this inheres in that'-in fact some basic truths will affirm and some will deny being.

Previous Page / First / Next Page of POSTERIOR ANALYTICS
Aristotle Home Page ||| Search Aristotle's works

Plato ||| Other Greek Philosophers ||| Elpenor's Free Greek Lessons

Development of Greek Philosophy ||| History of Greek Philosophy ||| History of Ancient Greece
Three Millennia of Greek Literature

 

Greek Literature - Ancient, Medieval, Modern

  Aristotle Complete Works   Aristotle Home Page & Bilingual Anthology
Aristotle in Print

Elpenor's Greek Forum : Post a question / Start a discussion

Learned Freeware

Reference address : https://www.ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/posterior-analytics.asp?pg=38