|
Translated by G. Mure.
84 pages - You are on Page 45
Part 25
The preceding arguments constitute our defence of the superiority of commensurately universal to particular demonstration. That affirmative demonstration excels negative may be shown as follows.
(1) We may assume the superiority ceteris paribus of the demonstration which derives from fewer postulates or hypotheses-in short from fewer premisses; for, given that all these are equally well known, where they are fewer knowledge will be more speedily acquired, and that is a desideratum. The argument implied in our contention that demonstration from fewer assumptions is superior may be set out in universal form as follows. Assuming that in both cases alike the middle terms are known, and that middles which are prior are better known than such as are posterior, we may suppose two demonstrations of the inherence of A in E, the one proving it through the middles B, C and D, the other through F and G. Then A-D is known to the same degree as A-E (in the second proof), but A-D is better known than and prior to A-E (in the first proof); since A-E is proved through A-D, and the ground is more certain than the conclusion.
Hence demonstration by fewer premisses is ceteris paribus superior. Now both affirmative and negative demonstration operate through three terms and two premisses, but whereas the former assumes only that something is, the latter assumes both that something is and that something else is not, and thus operating through more kinds of premiss is inferior.
Aristotle Complete Works
Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://www.ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/posterior-analytics.asp?pg=45